Ulam-Hyers stability of a 2-variable AC-mixed type functional equation in Felbin's type spaces: fixed point method
نویسندگان
چکیده
منابع مشابه
A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces
In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$
متن کاملA new type of Hyers-Ulam-Rassias stability for Drygas functional equation
In this paper, we prove the generalized Hyers-Ulam-Rassias stability for the Drygas functional equation$$f(x+y)+f(x-y)=2f(x)+f(y)+f(-y)$$ in Banach spaces by using the Brzc{d}ek's fixed point theorem. Moreover, we give a general result on the hyperstability of this equation. Our results are improvements and generalizations of the main result of M. Piszczek and J. Szczawi'{n}ska [21].
متن کاملHyers-Ulam-Rassias stability of a composite functional equation in various normed spaces
In this paper, we prove the generalized Hyers-Ulam(or Hyers-Ulam-Rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.
متن کاملGeneralized Hyers-Ulam Stability of a New Mixed Type Functional Equation in Fuzzy Normed Space
In this paper, we obtain the general solution and investigate the generalized Hyers-Ulam stability of the new generalized mixed type additive and quadratic functional equation in fuzzy normed space. Mathematics Subject Classification 39B55, 39B52, 39B82
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematical Forum
سال: 2013
ISSN: 1314-7536
DOI: 10.12988/imf.2013.35108